If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-18t+5=0
a = 3; b = -18; c = +5;
Δ = b2-4ac
Δ = -182-4·3·5
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{66}}{2*3}=\frac{18-2\sqrt{66}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{66}}{2*3}=\frac{18+2\sqrt{66}}{6} $
| 10r=15 | | -24x=15 | | -2+4x=15 | | k(k-8)=-18 | | 13n=6 | | 7r2+15r+2=0 | | 19z=7 | | -7-0.2m=3 | | 16x^2+61x-42=0 | | 7m2+50m+7=0 | | 8x+10=3x+2=5x+8 | | 3x^2-7x=4x-8 | | 12(x/3+x-1/4=2+x | | 1.5(5x+2)=2 | | 6(x-7)+26=6x-15 | | 5/2x6=15 | | 10(x/2+x/5=1 | | -15+5+x=-20 | | 2x^2+9=-7x+4 | | -3-5x=14 | | 2x^2+9=-7x+42x2+9=−7x+4 | | 2x^2+9=-7x+2 | | 2y2+3=53 | | 2y2=3=53 | | Y=x^2+6×-6 | | x+8=6x+7 | | 81n2=49 | | 9(x-2)+4=9x-14 | | x+2x+x−15000=109000 | | 25n2+4=20 | | 27=3x^2+12x | | 4^(z-4)+6=70 |